Computing Higher Central Moments for Interval Data

نویسندگان

  • Vladik Kreinovich
  • Luc Longpré
  • Scott Ferson
  • Lev Ginzburg
چکیده

Higher central moments are very useful in statistical analysis: the third moment M3 characterizes asymmetry of the corresponding probability distribution, the fourth moment M4 describes the size of the distribution’s tails, etc. When we know the exact values x1, . . . , xn, we can use the known formulas for computing the corresponding sample central moments. In many practical situations, however, we only know intervals x1, . . . ,xn of possible values of xi; in such situations, we want to know the range of possible values of Mm. In this paper, we propose algorithms that compute such ranges. 1 Formulation of the Problem Higher moments are important. In engineering and science, when we have n measurement results x1, . . . , xn, traditional statistical approach (see, e.g., [5, 21]) usually starts with computing their (sample) average E = x̄ = x1 + . . . + xn n and their (sample) variance V = (x1 − E) + . . . + (xn − E) n .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymptotic algorithm for computing the sample variance of interval data

The problem of the sample variance computation for epistemic inter-val-valued data is, in general, NP-hard. Therefore, known efficient algorithms for computing variance require strong restrictions on admissible intervals like the no-subset property or heavy limitations on the number of possible intersections between intervals. A new asymptotic algorithm for computing the upper bound of the samp...

متن کامل

A Review of Numerical Methods for Computing Point and Interval Estimates by S-PLUS Package

For computing different point estimates such as method of moment and maximum like-lihood estimates and different interval estimates (classical confidence interval, unbi-ased confidence interval, HPD interval), we may deal with the equations which need be solved numerically. In this paper, some numerical methods for solving these type of equations are reviewed in S-PLUS package. Various examples...

متن کامل

Moments Inequalities of a Random Variable Defined over a Finite Interval

Some estimations and inequalities are given for the higher order central moments of a random variable taking values on a finite interval. An application is considered for estimating the moments of a truncated exponential distribution.

متن کامل

Computing the efficiency interval of decision making units (DMUs) having interval inputs and outputs with the presence of negative data

The basic assumption in data envelopment analysis patterns (DEA) (such as the CCR andBCC models) is that the value of data related to the inputs and outputs is a precise andpositive number, but most of the time in real conditions of business, determining precisenumerical value is not possible in for some inputs or outputs. For this purpose, differentmodels have been proposed in DEA for imprecis...

متن کامل

Central Moment Discrepancy (CMD) for Domain-Invariant Representation Learning

The learning of domain-invariant representations in the context of domain adaptation with neural networks is considered. We propose a new regularization method that minimizes the discrepancy between domain-specific latent feature representations directly in the hidden activation space. Although some standard distribution matching approaches exist that can be interpreted as the matching of weigh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003